improve your science

Residual Stress Measurement Techniques: SET-Cos-Alpha, SET-Sin²ψ, MET-Sin²ψ

Mohammed Belassel, James Pineault, Michael Brauss ¹ 6150, Morton Industrial Parkway, LaSalle, Ontario, Canada ² PROTO MANUFACTURING INC, 12350 Universal Drive, Taylor. Michigan, USA email: <u>mbelassel@protoxrd.com</u>, jpineault@protoxrd.com, mbrauss@protoxrd.com

> This work was published in: Advances in X-ray Analysis, Volume 64, 2020, pp, 1-10

improve your science

Outline

- 1. Theory of the different techniques
 - $Sin^2\psi$ and $Cos\alpha$
 - Multiple Exposure Technique (MET)
 - Single Exposure Technique (SET)
 - Stress under applied load
- 2. Simulation of SET- $\sin^2\psi$, MET- $\sin^2\psi$ and SET-Cosa
- 3. Stress measurements on samples and 4-point bend specimen
- 4. Results and discussions
- 5. Conclusions

improve your science

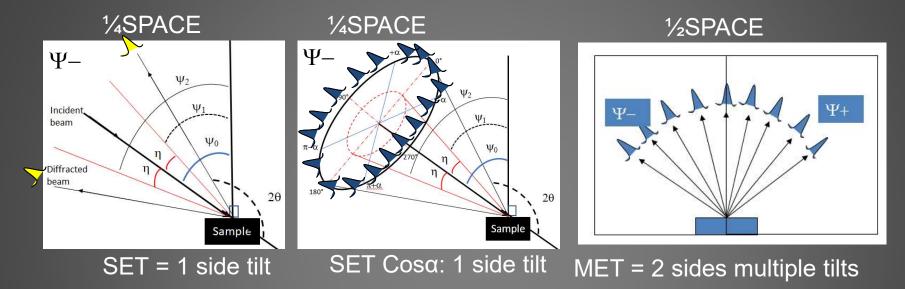
Instrument evaluation and qualification

What is available?

- 1. Free-stress powder (normal and shear stress)
- 2. Shot peened high stress reference standards (normal stress, no shear stress)
- 3. Stress under uniaxial loading (relative change in stress)
- 4. Perform gauge R&R

Structure of an instrument

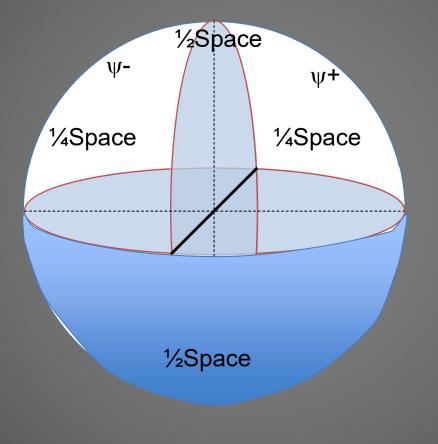
- 1. Goniometer geometry
- 2. Detector, X-ray source, optics
- 3. Software: peak location methods, **STRESS MODEL**, other options


improve your science

History of stress measurement simplified

- 1. Two points using film or detector \rightarrow Normal stress σ_{ϕ}
- 2. Multiple points using detector $(\psi^+, \sin^2\psi) \rightarrow \text{Normal stress } \sigma_{\phi}$
- Multiple points using detector (ψ+ and ψ-, Sin²ψ) → Normal stress σ_φ and Shear stress τ_φ(τ₁₃) (Standard documents)
- 4. Cos α using Debye ring \rightarrow Normal stress σ_{ϕ}

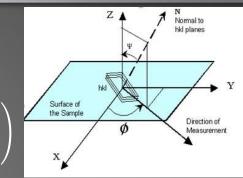
improve your science


Measurement techniques

 $\overline{\psi_0}$; $\psi_1 = \psi_0 + \eta$ and $\psi_2 = \psi_0 - \eta$, where $\eta = (\pi - 2\Theta)/2$.

- SET-Sin² ψ uses 2 ψ -angles with a single tilt position.
- SET-Cosα uses multiple angles around the Debye ring and one tilt position.
- MET-Sin² ψ uses multiple angles distributed on 2 sides with ψ^+ and ψ^- .

improve your science


improve your science

Sin²Ψ technique - MET-Sin²Ψ technique

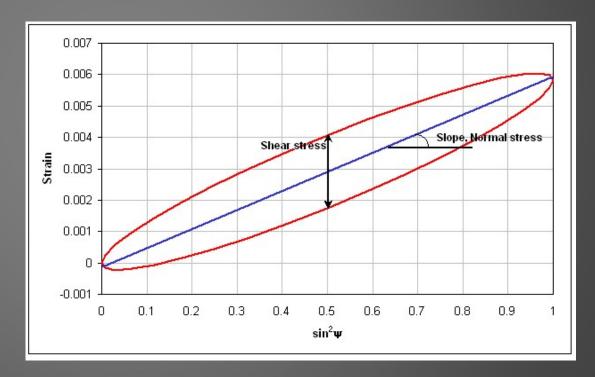
• Strain: $\varepsilon_{\phi\psi} = \frac{D_{\phi\psi} - D_0}{D_0}$

•

• For triaxial stress state, $\sigma_{ij} = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{12} & \sigma_{22} & \sigma_{23} \\ \sigma_{13} & \sigma_{23} & \sigma_{33} \end{pmatrix}$, $\epsilon_{ij} = \begin{pmatrix} \varepsilon_{11} & \varepsilon_{12} & \epsilon_{13} \\ \epsilon_{12} & \epsilon_{22} & \epsilon_{23} \\ \epsilon_{13} & \varepsilon_{23} & \epsilon_{33} \end{pmatrix}$

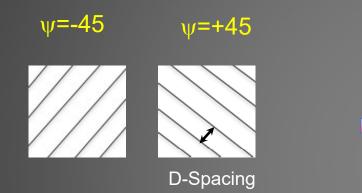
- Calculate strains in the direction $n_i = \begin{pmatrix} \sin\psi \cos\phi \\ \sin\psi \sin\phi \\ \cos\psi \end{pmatrix}$, $\varepsilon_{\phi\psi} = \varepsilon_{ij}n_in_j$
- Hooke's law for isotropic materials : $\varepsilon_{ij} = \frac{1+v}{E}\sigma_{ij} \frac{v}{E}(\sigma_{11} + \sigma_{22} + \sigma_{33})\delta_{ij}$
 - MET-Sin² ψ equation is: $\varepsilon_{\phi\psi} = \frac{1+v}{E} (\sigma_{11}cos^{2}\phi + \sigma_{22}sin^{2}\phi + \sigma_{12}cos^{2}\phi - \sigma_{33})Sin^{2}\psi + \frac{1+v}{E} \sigma_{33}$ $-\frac{v}{E} (\sigma_{11} + \sigma_{22} + \sigma_{33}) + \frac{1+v}{E} (\sigma_{13}cos\phi + \sigma_{23}sin\phi)Sin^{2}\psi$
- Both normal and shear stresses can be calculated when multiple tilts in both directions are selected (ψ >0 and ψ <0).
- $\sigma_{i3} = 0$, except $(\sigma_{13}, \sigma_{23}) \neq 0$ because of the non-uniformity distribution of strain generated by the process applied

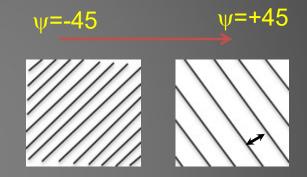
improve your science


• In case of a single direction measurement, assuming $\sigma_{33} = 0$ because of the shallow penetration of x-rays, the equation can be written as :

$$\varepsilon_{\phi\psi} = \frac{1+\nu}{E} \left(\sigma_{\phi}\right) \sin^2\psi + \frac{1+\nu}{E} \left(\tau_{\phi}\right) \sin 2\psi - \frac{\nu}{E} \left(\sigma_{11} + \sigma_{22}\right)$$

- $\frac{1+\nu}{E} = \frac{1}{2}S_2 \text{ and } -\frac{\nu}{E} = S_1$
- Using elliptical regression:


$$\varepsilon_{\varphi\psi} = A\sin^2\psi + B\sin^2\psi + C$$

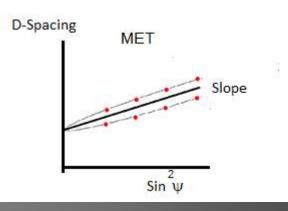

• This model is exclusively used in most stress software.

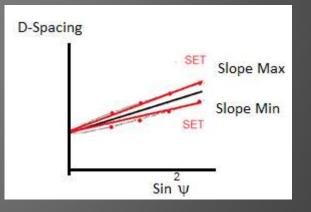
improve your science

Change of D-spacing after applying a shear stress

When shear stresses can be measured:

- Heterogeneous materials
- Non-uniform processes
- Curved surfaces
- Tilted surfaces


improve your science


Single Exposure technique (SET)

• The $Sin^2\psi$ equation in this case can be reduced to the following form for $\phi=0$:

 $\sigma_{11} = \frac{\Delta \varepsilon_{\psi}}{\Delta Sin^2 \psi} \left(\frac{E}{1+\nu}\right) \text{ slope between 2}$ points.

Only Normal stress can be calculated.

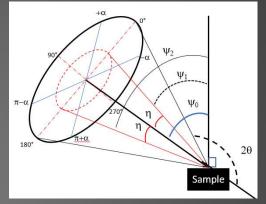
improve your science

Cos-Alpha

- For triaxial stress state, $\sigma_{ij} = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{12} & \sigma_{22} & \sigma_{23} \\ \sigma_{13} & \sigma_{23} & \sigma_{33} \end{pmatrix}$, $\epsilon_{ij} = \begin{pmatrix} \varepsilon_{11} & \varepsilon_{12} & \epsilon_{13} \\ \epsilon_{12} & \epsilon_{22} & \epsilon_{23} \\ \epsilon_{13} & \varepsilon_{23} & \epsilon_{33} \end{pmatrix}$
- Hooke's law for isotropic materials :

$$\varepsilon_{ij} = \frac{1+\upsilon}{E}\sigma_{ij} - \frac{\upsilon}{E}(\sigma_{11} + \sigma_{22} + \sigma_{33})\delta_{ij},$$

• Calculate strains in the direction (ψ_0, ϕ_0, α) , $\varepsilon_{\varphi\psi} = \varepsilon_{ij} n_i n_j$


where $n_i = \begin{pmatrix} \cos\eta \sin\psi_0 + \sin\eta \cos\psi_0 \cos\alpha \\ \cos\eta \sin\psi_0 \sin\phi_0 + \sin\eta \cos\psi_0 \sin\phi_0 \cos\alpha + \sin\eta \cos\phi_0 \sin\alpha \\ \cos\eta \cos\psi_0 - \sin\eta \sin\psi_0 \cos\alpha \end{pmatrix}$

For
$$\phi_0 = 0$$
:
 $n_i = \begin{pmatrix} \cos\eta \sin\psi_0 + \sin\eta \cos\psi_0 \cos\alpha \\ \sin\eta \sin\alpha \\ \cos\eta \cos\psi_0 - \sin\eta \sin\psi_0 \cos\alpha \end{pmatrix}$

improve your science

• The Cos-Alpha equation is:

$$a_{1} = \frac{1}{2} \left[(\varepsilon_{\alpha} - \varepsilon_{\pi+\alpha}) + (\varepsilon_{-\alpha} - \varepsilon_{\pi-\alpha}) \right]$$
$$a_{2} = \frac{1}{2} \left[(\varepsilon_{\alpha} - \varepsilon_{\pi+\alpha}) - (\varepsilon_{-\alpha} - \varepsilon_{\pi-\alpha}) \right]$$

 $\varepsilon_{\alpha}, \varepsilon_{\pi+\alpha}, \varepsilon_{-\alpha}$ and $\varepsilon_{\pi-\alpha}$ are the measured strains from the 4 sectors of the Debye ring. $a_1 = -\frac{1+v}{E}(\sigma_{11}sin2\psi_0 + 2\sigma_{13}cos2\psi_0)sin2\eta.Cos\alpha$

 $a_{2} = 2 \frac{1+v}{E} \left[\sigma_{12} \sin \psi_{0} + 2 \sigma_{23} \cos \psi_{0} \right] \sin 2\eta. \sin \alpha$

This is the true correct equation that should be considered.

It is clear from these equations that the components σ_{11} and σ_{13} cannot be separated and that σ_{11} and σ_{12} can be measured accurately only if $\sigma_{13}=0$ and $\sigma_{23}=0$.

If $\sigma_{13}=0$ and $\sigma_{23}=0$, (biaxial stress state), the previous equations are reduced to:

 $a_{1} = -\frac{1+v}{E}(\sigma_{11}sin2\psi_{0} + \frac{2\sigma_{13}cos2\psi_{0}}{2\sigma_{23}cos2\psi_{0}})sin2\eta.Cos\alpha$ $a_{2} = 2\frac{1+v}{E}(\sigma_{12}sin\psi_{0} + \frac{2\sigma_{23}cos\psi_{0}}{2\sigma_{23}cos\psi_{0}})sin2\eta.Sin\alpha$

and

$$(\sigma_{11}) = -\frac{E}{(1+\nu)sin2\psi_0sin2\eta} \frac{\partial a_1}{\partial Cos\alpha}$$
$$(\sigma_{12}) = \frac{E}{2(1+\nu).si} \frac{\partial a_2}{0.sin2\eta} \frac{\partial a_2}{\partial Sin\alpha}$$

 σ_{11} and σ_{12} are calculated by plotting the quantities $a_1 = f(\cos \alpha)$ and the quantities $a_2 = f(\sin \alpha)$.

This what the $\cos\alpha$ instruments use in the software. Is this acceptable?

improve your science

Applied loading:

• Under applied load, the stress equations become:

MET-
$$\operatorname{Sin}^{2}\psi$$
:
 $\varepsilon_{\varphi\psi} = \frac{1+v}{E} \left(\sigma_{11}^{A} + \sigma_{11}^{RS}\right) Sin^{2}\psi - \frac{v}{E} \left(\sigma_{11}^{A} + \sigma_{11}^{RS}\right)$

SET- $\operatorname{Sin}^{2}\psi$:
 $\left(\sigma_{11}^{A} + \sigma_{11}^{RS}\right) = \frac{E}{1+v} \frac{\partial \varepsilon_{\psi}}{\partial Sin^{2}\psi}$

SET-Cosa:
 $\left(\sigma_{11}^{A} + \sigma_{11}^{RS}\right) = -\frac{E}{(1+v)\sin 2w} \frac{\partial a_{1}}{\partial Cosa}$

 σ_{11}^A : is the applied load.

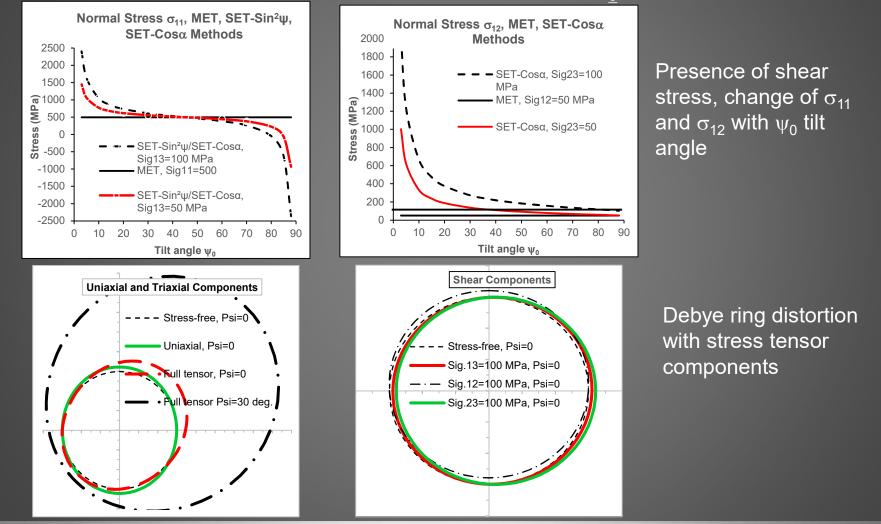
 σ_{11}^{RS} : is the residual stress measured before loading. $(\sigma_{11}^A + \sigma_{11}^{RS})$: is the total stress measured during the experiment.

The slope of the measured stress versus applied stress is: $m = \frac{\partial f(\sigma_{11}^A + \sigma_{11}^{RS})}{\partial (\sigma_{11}^A)}$

1. <u>Simulation</u>:

- a) Residual stress at different inclination angle Ψ_0 , Ψ_0 was varied form 0° to 90°
- b) Simulation for 2 stress conditions:

$$\sigma_{ij}(MPa) = \begin{pmatrix} +500 & +100 & +100 \\ +100 & +500 & +100 \\ +100 & +100 & 0 \end{pmatrix} \text{ and } \sigma_{ij}(MPa) = \begin{pmatrix} +500 & +50 & +50 \\ +50 & +500 & +50 \\ +50 & +50 & 0 \end{pmatrix}$$

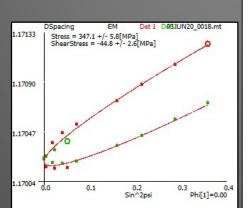

- 1. <u>Experiment Simulation</u>
- Test under loading using 4-point bend specimen fabricated and tested according to ASTM E-<u>1426.</u> For this carbon steel: XEC = 5.14.10⁻⁶ MPa⁻¹, Bragg angle 2Θ=156°, E= 210 GPa.
- Measured stress tensor on the 4-point bend specimen prior to loading:

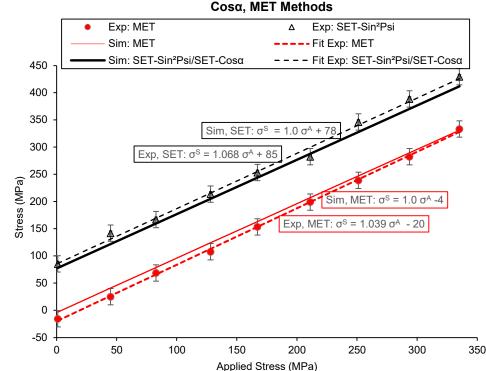
$$\sigma_{ij}(MPa) = \begin{pmatrix} -4\pm 10 & +6\pm 7 & -48\pm 2\\ +6\pm 7 & -258\pm 10 & -5\pm 2\\ -48\pm 10 & -5\pm 2 & 0\pm 6 \end{pmatrix}$$

- 3. Experiment
- Residual stress measurements on: Aluminum, Stellite and Stainless Steel materials.

improve your science

Simulation of SET- Sin² ψ , MET- Sin² ψ SET-Cos α with ψ_0 inclination angle

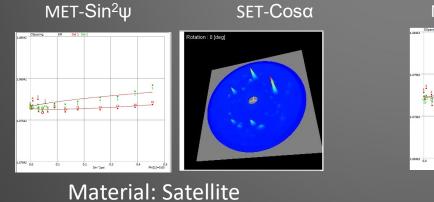


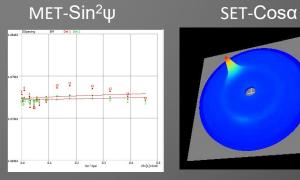

improve your science

Comparison of 4 Point Bend Loading results: SET-Sin² /SET-

Simulation and experimental 4-point bend loading results SET-Cos α , SET- Sin² ψ MET- Sin² ψ

- Agreement between the measurements and the simulation for all techniques
- Difference in residual stress levels at zero load between SETs and MET.
- Offset of SET- $\sin^2 \psi$ and SET- $\cos \alpha$, when compared to MET- $\sin^2 \psi$, presence of shear stress σ_{13} in the material.
- All slopes are within the experimental error close to 1.




improve your science

<u>Results</u>:

Measured stresses on different materials

Goniometer Geometry/Mode	Technique		Stress (MPa) Aluminum	Stress (MPa) Stellite	Stress (MPa) Stainless Steel
Omega	Sin²ψ	MET	Normal stress: -18±19 Shear stress:-4±9	Normal stress: +436±14 Shear stress: +99±6	Normal stress: +124±90 Shear stress: +30±44
		SET	Normal stress: +7	Normal stress: +138	Normal stress: -46
Debye Ring	Cosα	SET	Failed	Normal stress: +3421±3702 ^F	Normal stress: +4574±2206 ^F

Material: Stainless steel

The difference is in the stress model used in the software (elliptical fit, multi-linear fit for triaxial measurement) and the tilt angles distributed over the half-space.

Testing	SET- Sin ² ψ	SET-Cosα	MET- Sin ² ψ
Space covered	1/4-Space	1/4-Space	½-Space
Free stress powder	Yes	Yes	Yes
Shot peened high stress standard	Yes	Yes	Yes
Uniaxial loading	Yes	Yes	Yes
High stress standard with shear stress	No	No	Yes
Heterogenous materials	No	No	Yes

Other issues we can mention with SET-Cos α are:

- Stress gradient,
- Surface roughness.
- Psi offset: surface inclination, curved surface

improve your science

Residual Stress Standards and Guidelines

- 1. ASTM E-915 (2010) "Standard test method for verifying the alignment of x-ray diffraction instruments for residual stress measurement".
 - Normal and Shear Stresses are required.
- 2. ASTM E2860 (2012):" Standard Test Method for Residual Stress Measurement by X-Ray Diffraction for Bearing Steels".
 - MET is recommended.
 - Normal and Shear Stresses are required.
 - Comprehensive procedure for residual stress measurement on bearings
- 3. EN 15305 (2008): "Non-destructive testing Test method for residual stress analysis by X-ray diffraction".
 - MET is recommended.
 - Normal and Shear Stresses are required.
 - Detailed procedure for stress measurements for general conditions.
- 4. ASM Handbook, Vol. 11 (2020)
- 5. SAE HS-784 (2003)
- 6. SEM Handbook, (1996)
- 7. Others...

improve your science

Alternative solutions:

- 1. Use 2 Debye rings for measurement in a single direction.
- 2. Use multiple Debye-rings for triaxial measurement

improve your science

<u>Conclusions</u>

- 1. SET-Sin² ψ is similar to SET-Cos α , equal stress values.
- 2. SET-Sin² ψ , SET-Cos α cannot measure shear stress component σ_{13} , necessary for instrument alignment, surface orientation and curvature detection.
- 3. Normal stresses measured with SET-Sin² ψ and SET-Cos α are affected by the presence of σ_{13} . Same is true for σ_{12} which is affected by σ_{23} in case of SET-Cos α .
- 4. Reliable measurements must include both ψ^+ and ψ^- , such as MET to cover $\frac{1}{2}$ -space.
- 5. SET-Sin² ψ was not a reliable technique and it was not considered in any standard. SET-Cos α is similar.
- 6. No assumptions should be made prior to stress measurement. Limited results (σ_{11}) can be detrimental for decision making in the industry.
- 7. Cos α technique can be developed with multiple Debye rings to cover both ψ^+ and ψ^- , equivalent to MET-Sin² ψ .
- 8. Existing tools for evaluation of instruments must include the stress model used in the software.
- 9. Standards should evolve to include triaxial stress state and shear components for testing and calculation models to guarantee the best outcome and most reliable results.