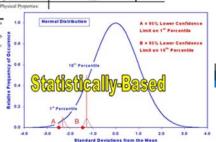
MMPDS & Additive Metals

NIST-ASM International Additive Manufacturing Data Management Workshop October 28, 2020


Doug Hall Program Manager – MMPDS Battelle Memorial Institute 614-424-6490 halld@battelle.org



Metallic Materials Properties Development and Standardization

History

- ANC5 (1937-1954), MIL-HDBK-5 (USAF: 1954 2003), MMPDS (FAA: 2003-today)
- Battelle Memorial Institute program Secretariat since 1956.
- MMPDS Handbook is the primary source of statistically-based design allowable properties for metallic materials and fasteners used in many different commercial and military weapon systems around the world.
- The MMPDS General Coordinating Committee is a collaboration between government agencies, aerospace companies, testing and data service companies, and metallic material producers.
- Biannual meetings to review and approve statistical analyses and guidelines.

<u>Scope</u>

- The Handbook currently contains 600+ A/B-Basis and 1000+ S-Basis entries, 400+ unique metal specifications.
- Two to five new alloys are added each year.
- For more information visit www.mmpds.org

MMPDS General Coordinating Committee

Government Responsibilities

- Maintain Technical Oversight
- Ensure Certifying Body Requirements Met
- Support Analyses to Add/ Update GSG Priority Materials and Data
- Justify Access to Data by Government Agencies
- Cover Publication of MMPDS Revisions, Agendas and Minutes

Battelle MMPDS Secretariat

Industry Responsibilities

- Provide/Update Specialized Data Analysis Tools
- Provide Exclusive Access to Current / Quantitative Data & Supporting Information
- Establish Priority of New Materials and Data Analysis Tools for MMPDS Incorporation
- Supporting MMPDS Analyses for MMPDS Coordination

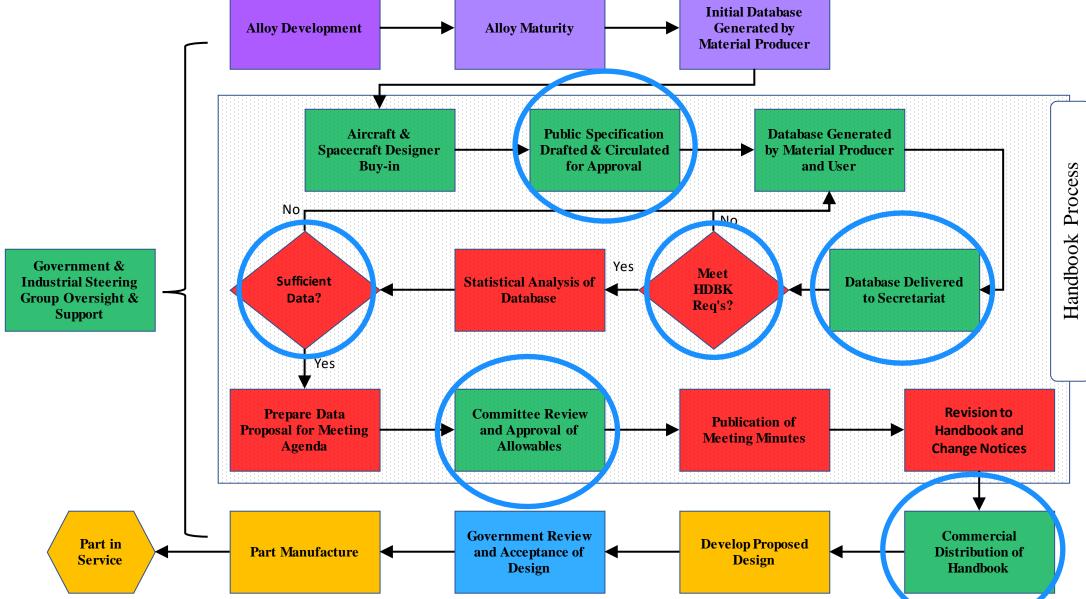
Task Groups:

GTG – approve <u>all</u> guidelines

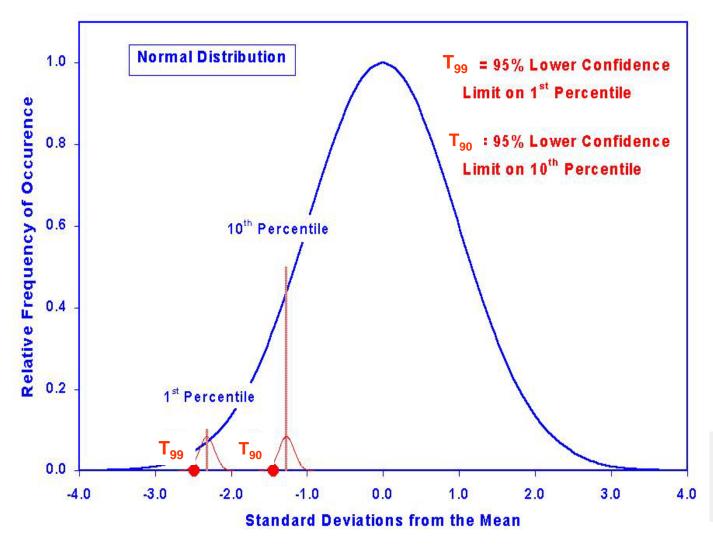
MTG – approve materials (Ch. 2-7)

FTG – approve fasteners (Ch. 8)

ETTG – approve V2 content


Steering Groups: Get industry sector inputs ASG, MATSSG, PSG

Working Groups: Technical input from industry FatWG, SWG, WWG V2WG – develop V2 tech details



MMPDS Review & Approval Process

Volume I A-Basis, B-Basis, S-Basis: Material Allowables

T₉₉ and T₉₀ are one-sided lower tolerance bounds. Both are calculated from data.

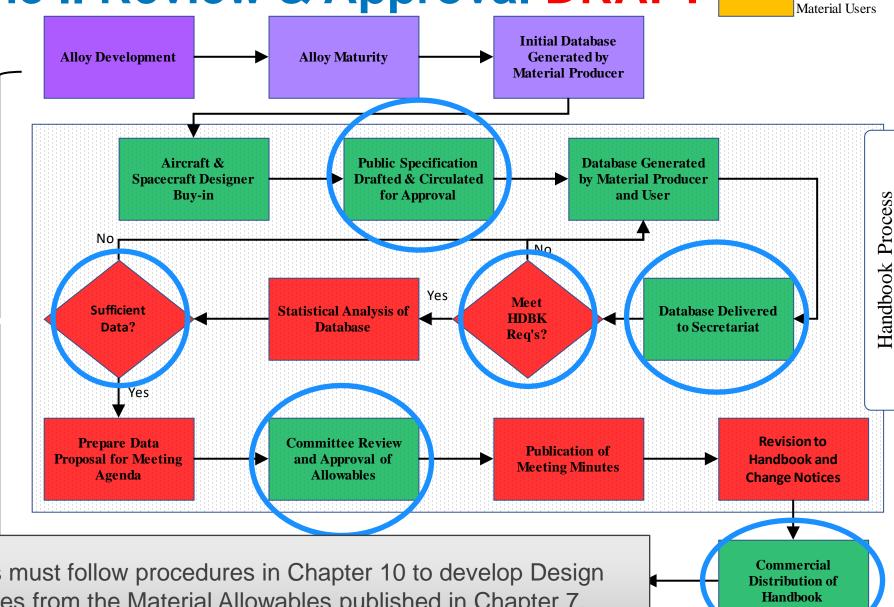
S-Basis = is a T_{99} that does not meet A-Basis requirements for sample size or distribution fit.

A-Basis is the lower of the specification minimum or T_{99} value.

B-Basis = is the T_{90} . It is not related to the spec minimum.

Metallic A-/B-Basis are values published in MMPDS or approved by the FAA "with further showing." A large sample is required.

MIDAS and FastenerCalc calculate T99 and T90 values in accordance with the requirements of MMPDS Chapter 9. A-/B-/S-Basis design allowables generated internally require further showing for certification.


Task 1.5 Volume II Review & Approval DRAFT

Material Producers Collaboration Secretariat Government Material Users

Process to publish values in Volume II.

Once a Material Allowable is published, the user must then develop an appropriate Design Allowable.

> **Government & Industrial Steering Group Oversight & Support**

End-users must follow procedures in Chapter 10 to develop Design Allowables from the Material Allowables published in Chapter 7.

Test Matrix - Sponsor a Public Specification

• Use the draft specification to make material meeting the SDO's requirements for establishing specification minimum values. The cartoon is consistent with current AMS AM Data Submission Guidelines.

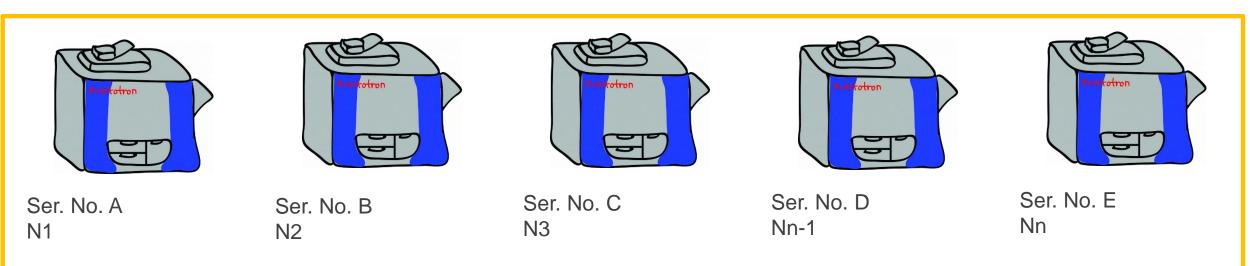
Ser. No. 1001
Draft Specification
Establish baseline
N=x1
y1 heats/lots/batches

Ser. No. 1002 Draft Specification Establish baseline N=x2 y2 heats/lots/batches

Ser. No. 1003
Draft Specification
Establish baseline
N=x3
y3 heats/lots/batches

 $x1 + x2 + x3 \ge 30$ $y1 + y2 + y3 \ge 3$ feedstock/mfg. lots 3+ different machines

Item 19-17: Minimum Specification Content Requirements for Public Specifications – Volume II


Minimum Content Requirements for Public Specs

- Section 9.2.2 Specification Requirements
 - Qualify controls to ensure stable statistically valid mechanical properties.
 - "These controls shall include, but not limited to, lot-release acceptance criteria for composition and mechanical properties, control of thermal-mechanical processing, sampling and testing methodologies, and internal soundness/qualify."
- Subsections to define addition requirements unique to AM
 - 9.2.2.1 Material Properties data to meet S-Basis requirements for properties in the Spec
 - 9.2.2.2 Manufacturing and/or Processing
 - 9.2.2.3 Feedstock
 - 9.2.2.4 Recycling
 - 9.2.2.5 Machine Qualification

Test Matrix – Bulk Material Allowables

 Build specimens per the public specification using qualified machines and all other necessary monitoring processes. Details are still being debated.

 $N1 + N2 + N3 + ... + Nn-1 + Nn \ge TBD$

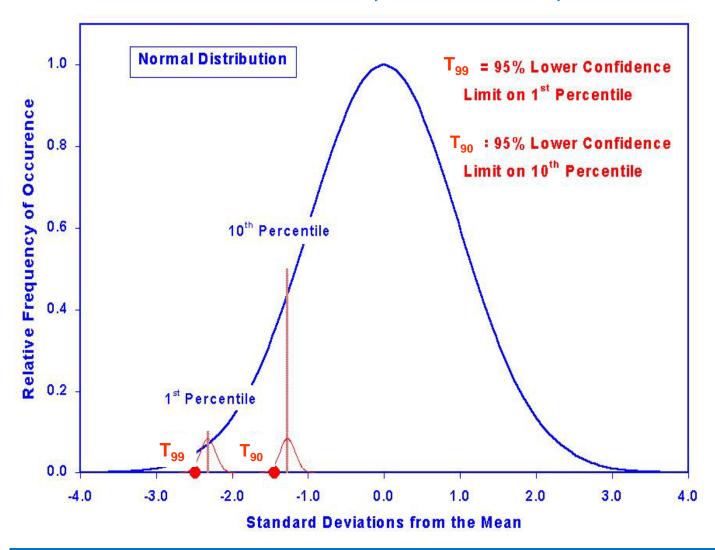
Industry experts recommend at least three machines, maybe more.

Mandatory, strongly recommended, and recommended properties, sample sizes, heats, lots, builds is TBD. Current TBD depends on which property. Ftu requires 100 to 299 points from 10+ heats/lots.

Item 19-20: Data Requirements for Volume II

19-20: Data Requirements for Volume II (Task 1.2)

Mechanical or Physical	Customary Statistical	Relative Importance in	elative Importance in Extenuating Circumstances for Special			Minimum Data Requirements				
Property	Basis	MMPDS	Material Usage Requirements	Sample	No. of	No. of	Machines	Build		
▼	▼	Volume II	▼	Size 🔻	Heats	Mfg. Lo	~	Cycle		
Bearing Yield and Ultimate Strength	S-Basis	Mandatory	Except for elevated temperature applications	30	3	3	3	3		
Compression Yield Strength ^a (Derived)	Same as Tensile Properties	Mandatory		30	3	3	3	3		
Density	Typical	Mandatory		3	3	3	3	3		
Elastic Modulus - Tension Elastic Modulus - Compression Elastic Modulus - Dynamic Elastic Modulus - Shear	Typical	Mandatory Ma Rec nmended Rec nmended	Dynamic modulus is strongly r a mended is some engine ppl. vtions	9	3	3	3	3		
Elastic Modulus (T, C, D) - Elevated Temperatures	Typical	Ma atory	For an ipated sage temperature	9	3	3	3	3		
Elongation	S-Basis	Ma atory	Two-inc. age ngth preferred	30	3	3	3	3		
Shear Ultimate Strength ^a	S-Basis	Mandatory	Except for elevated temperature applications	30	3	3	3	3		
Stress/Strain Curves (To Yield) Tension and Compression	Typical	Mandatory	Desirable to have accurate plastic strain offsets from 10 ⁻⁶ to 3 x 10 ⁻²	6	3	6	3	3		
Stress/Strain Curves (Full Range) Tension	Typical	Mandatory		6	3	6	3	3		
Tension Yield and Ultimate Strength	S-Basis	Mandatory		30	3	3	3	3		



19-20: Data Requirements for Volume II (Task 1.2)

Mechanical or Physical	Customary Statistical	Relative Importance in	Extenuating Circumstances for Special	Minimum Data Requirements				
Property	Basis	MMPDS	Material Usage Requirements	Sample	No. of	No. of	Machines	Build
	_	Volume II	_	C:	Heats	Mfg. Lc 🔻		Cycle
Coefficient of Thermal Expansion	Typical	Strongly recommended	For anticipated usage temperature range	6	3	3	3	3
Poisson's Ratio	Typical	Strongly recommended		6	3	3	3	3
Specific Heat	Typical	Str gly recon ended	nticipated sage temperature	6	3	3	3	3
Tension Yield and Ultimate Strength	D-Basis	Str gly re mmended	Espe Illy for tical ons; a arametric represe ation f data is possible	100	10	10	5	10
Tension Yield and Ultimate Strength	C-Basis	Strongly recommended	Especial for ength critical applications; a parametric representation of data is possible	100	10	20	5	20
Tension Yield and Ultimate Strength	C-Basis & D-Basis	Strongly recommended	Especially for strength critical applications; a parametric representation of data is not possible	299	10	20	5	20
Thermal Conductivity	Typical	Strongly recommended	For anticipated usage temperature range	6	3	3	3	3

Volume II C-Basis, D-Basis, S-Basis: Material Allowables

T₉₉ and T₉₀ are one-sided lower tolerance bounds. Both are calculated from data.

C-Basis is the lower of the specification minimum or T_{99} value.

D-Basis = is the T_{90} . It is not related to the spec minimum.

S-Basis = is a T_{99} that does not meet C-Basis requirements for sample size or distribution fit.

Metallic C-/D-/S-Basis published in MMPDS Volume II require "further showing."

Definitions for A-/B-C-/D-/S-Basis have not been approved for AM Metals by the MMPDS Coordinating Committee. Do Not Use those labels.

FAIR & MMPDS

- Findable
 - Data is retrieved by referencing an archival index.
- Accessible
 - Paper and electronic files are accessible to a short list of authorized users.
- Interoperable
 - Data is organized for our single purpose in a format consistent with the last time it was analyzed.
- Reusable
 - MMPDS has a legacy alloy review process.
 - Archived data is reviewed when new data is received and prioritized for re-analysis.

BATTELE III can be done